A sliding mode controller using neural networks for robot manipulator
نویسندگان
چکیده
This paper proposes a new sliding mode controller using neural networks. Multilayer neural networks with the error back-propagation learning algorithm are used to compensate for the system uncertainty in order to reduce the tracking error and control torque. The stability of the proposed control scheme is proved with the Lyapunov function method. Computer simulation shows that the control performance of the proposed neuro-controller yields better performance than the conventional sliding mode controller in the view of tracking errors and overall control torque.
منابع مشابه
Design On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملEliminating chattering phenomenon in sliding mode control of robot manipulators in the joint space using fuzzy logic
In industrial robotic manipulator, due to the presence of quite nonlinear dynamic and structural and nonstructural uncertainties, a precise model is not easily obtained. As a result, designing a controller with a suitable function based on system model is a challenging issue. Sliding mode control is a robust control with numerous applications which can overcome the aforementioned uncertainties....
متن کاملNeural Network MLP with Sliding Mode Controller for Robotic Manipulator
In this paper, MLP network with sliding-mode controller and neural control is designed to the joint position control of two-link robot manipulators for periodic motion and predefined trajectory tracking control. Because the nonlinear nature robot, first the nonlinear and robust method sliding mode as a control theory for the system is chosen. Chattering phenomenon is always a problem of sliding...
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کامل